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ABSTRACT
Yield prediction is still a major challenge in pear production. Forecasting fruit growth after modeled curves allows 

predicting both potential yield and quality. This research aimed to fit multilevel no-linear mixed models (NLMM) based 
on logistic curves to describe pear growth in the Upper valley of Rio Negro and Neuquén, Argentina. The models 
incorporated several thermo-accumulative indices accounting for temperature effects on fruit-growth physiology. 
In this way, they captured normal fruit-growth patterns and environmental variations along the growing season. 
The study was conducted on “William´s” pear trees for 16 seasons. Many trees and fruits were randomly selected 
and identified. Equatorial diameters were weekly measured with an electronic digital caliper. Climatic data was 
recorded for all studied seasons from INTA Upper Valley agrochemical station and thermo accumulative indexes 
were calculated from daily temperature. The best models were selected according to the information criteria index. 
Multilevel NLMM discerned and quantified the sources of stochastic variability at different levels, allowing better 
index criteria in comparison to models only considering a single level of variability among random effects. The 
incorporation of thermo accumulative indexes also increased model performance. 

Keywords: pear, growth curves, yield prediction, random effects.

RESUMEN
El pronóstico de cosecha es un gran desafío en la producción de peras. Estimar el tamaño de los frutos a partir de 

curvas de crecimiento permite predecir tanto la cantidad como la calidad de la fruta para cosecha. Este trabajo tuvo 
como objetivo ajustar modelos mixtos no lineales multiniveles (MMNL) basados en la curva logística para describir 
el crecimiento de peras “William´s” en el Alto Valle de Río Negro y Neuquén, Argentina. Los modelos ajustados in-
corporaron diferentes índices termoacumulativos que contemplan los efectos de la temperatura en la fisiología del 
crecimiento de los frutos. De esta manera, se logra no solo describir el crecimiento de los frutos, sino también se 
pueden observar las variaciones ambientales a lo largo de las temporadas de crecimiento. El estudio se realizó en 
perales “William´s” durante 16 temporadas. Se seleccionaron e identificaron al azar numerosos árboles y frutos. A 
cada fruto se le midió su diámetro ecuatorial semanalmente con un calibre digital electrónico. Los datos climáticos 
se obtuvieron de la estación meteorológica del INTA Alto Valle y los índices termoacumulativos se calcularon a par-
tir de los datos de temperaturas. Los mejores modelos fueron seleccionados según los criterios de información. El 
MMNL multinivel permitió discernir y cuantificar las fuentes de variabilidad estocástica en diferentes niveles, lo que 
permitió obtener mejores criterios de información en comparación con los modelos que solo consideraron un único 
nivel de variabilidad entre los efectos aleatorios. La incorporación de índices termoacumulativos mejoró notablemen-
te la performance de los modelos obtenidos.
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INTRODUCTION

Yield prediction is considered vital information for growers 
as it defines management and marketing strategies. In many 
commercial orchards yield prediction has become a frequent 
practice, including total production and fruit size distribution. 
This information enables farmers to improve packaging, stor-
age and marketing decisions. In marketing, differences of a 
few millimeters in fruit size have great implications on money 
returns (Giménez and Tassile, 2015).Until now, there were two 
main methods for predicting fruit size at harvest: stochastic 
models and curves. Stochastic models are based on the as-
sumption of a relation between tree fruit-load and final size. 
Growth curves attempt to describe fruit growth patterns 
through nonlinear, particularly sigmoid models. These curves 
provide an upper  asymptote indicating maximum reachable 
sizes, an inflection point showing maximum variation rate and 
a lower asymptote providing initial fruit size (Alvarez and Bo-
che, 1999). 

Different functions have been proposed to describe apple 
growth. A double sigmoid curve considering three well-defined 
phases (Magein, 1989), an expolinear model (Lakso et al., 
1995), a logistic model (Ortega Farias et al. 1998), and a neg-
ative exponential function (Zadravec et al., 2014). As regards 
pears, fruit growth has been well described by logistic curves 
in “Williams” cultivar (Bramardi et al., 1997; Giménez, 2012) 
in which the third parameterization has been proved the most 
appropriate (Ratkowsky, 1983). 

Models fitting growth patterns of a specific cultivar in a cer-
tain region are not generalizable to other crop conditions. Final 
fruit size depends on many factors, such as genotype, crop 
management, weather, and fruit number (Bramardi et al., 2006; 
Jiménez and Royo Díaz, 2003). Climate directly and indirectly 
affects growth, yield and quality of crops (Oliveiora Aparecido 
et al., 2016).

Several studies have shown the relationship between weath-
er and yield in different crops. For instance, maximum and 
minimum temperatures affect grain crop yields (Kumar et al., 
2014); temperature, precipitation and pollen emission are used 
to estimate olive production (Galan et al., 2004); meteorological 
variables are used to predict fruit number per tree in oranges 
(Pasqua et al., 2007); and degree-days and potential evap
oration influence apple diameter (Kaack and Pedersen, 2010).

Incorporating environmental variables  into growth curves 
becomes possible through non-linear mixed models (NLMM), 
characterizing typical fruit-growth patterns, and contemplat-
ing the possibility of incorporating random effects according 
to clustering levels, modelling the correlation error, and inte-
grating covariates that characterize the growing season. In ad-
dition, NLMM are easier to interpret, consider parsimony, and 
validate regardless of the range of observed data (Pinheiro and 
Bates, 2000).

Fixed effects of the structural components in NLMM are 
based on longitudinal data obtained from equatorial diame-
ters of certain fruits throughout their growth cycle. However, in 
this way, random effects estimation is conditioned to restric-
tions imposed by the initial fruit selection. If the models have 
predictive purposes, it is necessary to generalize those to a 
larger population. This is achieved by considering transversal 
measurements defined as random samples of equatorial fruit 
diameters in a reduced number of growth cycle moments (Tas-
sile et al., 2015).

Moreover, error correlation structure needs to be included 
since randomizing the time factor is not possible for repeated 
measurements over time on the same fruit. 

The inclusion of random parameters on different cluster-
ing levels could significantly improve model fit. Furthermore, 
stochastic residual variability present in a significant magnitude 
indicates that some fixed effects like genetics, topography, or 
climate factors have been ignored by the model (Calama and 
Montero, 2005). Information on these factors is not usually 
available in growth data, therefore, random effects can approxi-
mate these fixed effects, either unknown or difficult to quantify.

Random effects are also useful to obtain Empirical Bayesian Es-
timators (EBEs). EBEs can examine groups of interest, subpop-
ulations, or reveal the existence of quantifiable fixed effects 
not considered but detected through associations between 
these and possible sources of variability in any of the levels 
considered of the random effects. Environmental covariables 
arise here as good alternatives to characterize the effects of 
site and growth cycle.

The literature cites several studies based on NLMM explaining 
pear growth considering correlated data and random effects 
(Tassile et al., 2002), blueberry growth analyzing three different 
cultivars in low temperature environments (Godoy et al., 2008); 
prediction of crop yield of young eucalyptus plantations and 
description ofsite quality (Carrero et al., 2008), among others. 
This study aimed to include random effects and environmen-
tal covariates to NLMM for example, explaining pear growthin 
“Williams” pears in the Upper Valley of Río Negro and Neuquén. 

MATERIALS AND METHODS

Longitudinal and Transversal data

This study was conducted in seven “Williams” pear orchards 
located in the upper valley of Río Negro and Neuquén, during 
16 seasons for longitudinal data (9 seasons for the modeling 
base and 7 seasons for the validation base). The orchards are 
managed under usual regional practices in terms of pruning, 
sanitary treatments, thinning, and fertilization. Therefore, the 
models were fit to trees with optimal fruit load preventing fruit 
load from being considered a factor affecting them. 

Considering each orchard and season, some trees were ran-
domly selected and fruits of three size strata (small, medium 
and large) were carefully chosen. To define size strata, maxi-
mum and minimum size of 250 fruits was recorded and size 
range was calculated and later divided into small, medium and 
large categories. In total, considering all seasons, 46 trees and 
1,599 individualized fruits were measured, from which 17,667 
records of equatorial diameter were obtained.

Each fruit was identified and its equatorial diameter was 
weekly measured with an electronic digital caliper (Essex 
Stainless Hardened). Measurement moments are referenced 
as days after full bloom (DAFB), starting 25-30 DAFB with ave-
rage diameters of 10-15 mm and finishing at harvest time. Two 
different sides of the equatorial zone of the fruit were conside-
red. Each fallen fruit was replaced by another of similar size 
and the same tree.

Transversal data were obtained from eight sites that arise 
from the possible combinations between four seasons and two 
orchards. In December, at approximately 70 DAFB, some pear 
trees were selected and equatorial diameter of all their fruits 
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was measured. Then, at harvest, those fruits were collected 
recording equatorial diameter and weight.

Environmental data

In order to consider potential environmental covariates, daily 
average temperature was calculated from maximum and mini-
mum temperature recorded from August 1st to January 31st 
for each of the 16 seasons considered. Data was obtained at 
the agroclimatic station of INTA Alto Valle.

From daily temperature, 976 thermal accumulation indices 
(ITAC) were generated for different moments in the season, and 
594 ITAC for December in all seasons. These indixes depend 
on varying criteria and according to accumulation starting point, 
accumulation completion, and accumulation base temperature.

Data analysis

Model fittings were done using NLME and LMER library of R 
software (R CORE TEAM; 2018). Likelihood is obtained by Tay-
lor expansion according to the Best Linear Unbiased Estimates 
(BLUPs) linearization method proposed by Lindstrom and 
Bates (1990) to obtain NLME estimates with random factors. 
Models obtained by NLME present nested effects, or a very 
simple cross-effects structure, allowing direct heteroscedas-
ticity modelling and residual correlation. 

Then, the best model was selected based on the Information 
Criteria Index (ICI). The significance of fixed effects was eval-
uated by t-tests, based on Wald statistics with degrees of free-
dom obtained from the Between-Within method. 

The NLMER function of the R package lme4 version 1.1-7 
was used to obtain estimations. This function calculates likeli-
hood from LAPLACE approximation for multilevel NLME, both 
nested and crossed.

When necessary, dummy variables were generated to model 
the fixed effects of the parameters, when it was impossible to 
obtain them directly from the NLMER function.

Once the estimation process was finished, the variance com-
ponent structure was evaluated by the ICI, while fixed effects 
inference was made from likelihood ratio tests (LRT). 

Since the obtained models have predictive objectives, the fi-
nal choice is conditioned by the performance of the predictive 
criteria (PC) obtained for each candidate model.

The general environmental covariate base was built with 
a function obtaining representative values for each season 
based on TCIs. Environmental covariate candidates were se-
lected from the correlations between random effects EBEs at 
site level and the general environmental covariate. The final 
selection consists of visual insights into the distribution of 
candidate environmental covariates and their relation to the 
EBEs under consideration.

Selected environmental covariates are considered in the con-
struction of new NLME as fixed effects and considering present 
and/or absent terms in the random effects variance structure.

RESULTS AND DISCUSSION

Fitted model from longitudinal data 

The obtained models forecast fruit size as equatorial diame-
ter according to the DAFB, unlike other authors who suggest 

measuring the fruit weights or volumes (Lakso et al., 1995). 
In particular, growth is described by a logistic curve in third 
parameterization, agreeing with Bramardi et al. (1997) and Gi-
ménez (2012) who studied pears cv. ‘Williams’ and ‘Packham’s 
Triumph’ in the same region. Other authors have adjusted dou-
ble sigmoid curves (Magein, 1989), expolinear models (Lakso 
et al., 1995), negative exponential functions (Zadravec et al., 
2014), or quadratic functions (Atay et al., 2010).

The factors used to fit the logistic model were SITE (as the 
combination between seasons and orchards); TREES (which 
were randomly selected in each SITE); FRUIT (which were ran-
domly selected for each TREE from 3 strata of SIZES). Based 
on this, the proposed model (equation 1) included SIZE as fixed 
effect for parameters of the structural components and ran-
dom effect generated for FRUIT, TREE, SIZE*TREE and SITE. 
The least was incorporated to extend the inference space be-
yond the observed range.  

Equation 1

With        

Where
β1 parameter inversely related to the upper asymptote;
β2 parameter that relates the upper asymptote (UA) to the 

lower asymptote (LA), through the function: eUA /LA;
β3 parameter related to the growth rate from the initial values 

to the final values; 
βi, SIZEk

effect of the jth size for the ith parameter of the fixed 
effect (i: β1, β2, β3; k: small, medium and big); 

bi, SITEj
effect of the jth site for the ith parameter of the random 

effect with bi, SITEj 
~ N ([0,0,0], DTREE);

bi, TREE (SITE)l(k)
effect of the ith tree within the jth place of the ith 

parameter of the random effect with bi, TREE (SITE)l(j)  
~ N ([0,0,0], 

DTREE);
bi, SIZE*TREE(SITE)kl(j)

 Interaction between the kth size and the lth 
tree of the jth site for the random effect parameter with bi, 

SIZE*TREE(SITE)kl(j) 
~ N ([0,0,0], DSIZE*TREE );

bi, FRUTOm(jlk)
 Effect of the mth fruit of the jth site, the kth size 

and the lth tree of the random effect with bi, FRUTOm(jlk) 
~ N ([0,0,0], 

DFRUIT);
Ɛjlk 

Random error with Ɛ
jlk

 ~ N (0, Ϭ2) y Ϭ2= Ϭ2  Inixni where Inixni
 is 

an identity matrix and ni is the number of repeated measure-
ments per fruit

Alternative models are shown in table 1. The ICI values sug
gested model 2 as the best option. Then, in order to consider 
the possible correlation, different models were proposed based 
on Model 2 (table 2). New ICI values suggested model 2b as 
the best model.

Ɛ
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Table 1. Fixed effects, random effects and ICIs obtained for the fitted models.

Table2. Specifications of models 2a, 2b and 2c, and their ICIs.

Transversal data entry 

The new candidate models incorporated an additional ca-
tegory in SIZE and a variable called TYPE, discriminating be
tween longitudinal and transversal data (table 3). Using both 
transversal and longitudinal measurements aimed to leverage 
strengths of each data source. On one hand, longitudinal mea-
surements contribute to estimating shape parameters. On the 
other hand, transversal measurements improve variability es-
timation of random effects, generalizing inference to a broa-
der population.

The best model was Model 2_3, even with poor predictive 
performance while Model 2_4 presented low significance in 
some terms. Therefore, Model 2_5 and Model 2_6 were the 
best candidates. However, inconsistencies between the PC 
and IC have already been found in other studies modeling error 

covariance-variance structure (Huang and Meng, 2009; Meng 
and Huang, 2012). These researches emphasize the purpose 
of judging the candidate models, i.e. if predictive models are 
sought, using CI is more convenient, while if predictions are 
sought, PC constitutes a better option

In this study, the random effect of the fruit competed with 
modelling the residual structure of the error when considering 
serial correlation over time for the same fruit, generating the 
inconveniences obtained between ICIs and PCs. A similar 
situation occurred when estimating more than one random 
effect from fruits singly measured (transversal data). For this, 
we proposed a modelling strategy generating differential ran-
dom effects (bi) considering data nature as in Models 2_4, 2_5 
and 2_6 (table 4). The best model with the best parsimony was 
Model 2_10, followed by Model 2_11.

Model Fixed effects Random effects AIC BIC logLik

1 Size Fruit 53.934 54.056 -2 6.951

2 Size Fruit, Site 51.986 52.154 -25.971

3 Size Fruit, Site, Site*Size 60.423 60.682 -30.178

4 Size Fruit, Tree, Site 54.364 54.577 -27.154

Model Correlation AIC BIC logLik

2a first-order autocorrelation in the errors 50.106 50.281 -25.030

2b first-order continuous autocorrelation 
in the errors with DAFB as the time covariate 49.083 49.259 -24.518

2c first-order continuous autocorrelation 
in the errors with ln of DAFB as the time covariate 49.825 50.001 -24.889

Table 3. Specifications of models 2_1, 2_2, 2_3, 2_4, 2_5 and 2_6 and their ICIs.

Model Model specifications AIC BIC logLik

2_1 Fixed effects: β1TAMAk, 
β3TAMAk

Random effects: at Site level b3,SITIOj and
Fruit level b1,FRUTOm(j), b2,FRUTOm(j), b3,FRUTOm(j)

92829 92989 -46394

2_2 Idem model 2_1 but considering different variances for each TYPE in the error term 92238 92382 -46101

2_3 Idem Model 2_2, but includes a first-order continuous autocorrelation structure on 
log(DAFB) in the error term 90584 90735 -45273

2_4 fixed effect: β1TAMAk, 
β3TAMAk

random effect: at SITE level  bTRANS,3,SITEj, bLONG,3,SITEj and 
at FRUIT level bLONG,1,FRUITm(j), bLONG,2,FRUITm(j), bLONG,3,FRUITm(j), 
bTRANS,3,FRUITm(j)

92559 92719 -46259

2_5 fixed effects: β1SIZEk, 
β3TYPEr

random effect at SITE level bTRANS,3,SITEj, bLONG,3,SITEj and 
at FRUIT level bLONG,1,FRUITm(j), bLONG,2,FRUITm(j), bLONG,3,FRUITm(j), 
bTRANS,3,FRUITm(j)

92612 92685 -46262

2_6 Idem Model 2_5 but considering different variances 
for each TYPE in the error term. 93974 94085 -46973
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Environmental covariates

The incorporation of environmental covariates explaining bi 
at site level was evaluated to increase model predictive capac
ity. The TCIs were considered at two moments of fruit growth, 
after full bloom and during the month of December (65 to 95 
DAFB). Previous studies have shown the differential effect 
generated by TCIs, depending on the phenological moment of 
fruit growth. High temperatures in the early stages of growth 
produce larger fruits, whereas high temperatures in December 
result in smaller fruits (Tassile et al., 2005). 

Considering all TCIs, a variable selection process was used 
based on their relationship with the empirical Bayesian esti-
mators of bLONG,3,SITEj  and bTRANS,3,SITEj  of model 2_10 and model 
2_11. A total of three TCIs were selected: i) daily temperatu-
re accumulation exceeding 16 degrees from 46 DAFB to 100 
DAFB (COV_1) in early stages of fruit growth; ii) daily tem
perature accumulation exceeding 22 degrees from 122 DAFB 

to 150 DAFB (COV_2) in December; iii) daily temperature ac-
cumulation exceeding 17 degrees from 60 DAFB to 100 DAFB 
(COV_3) in early stages of fruit growth.

Many models were proposed (table 5), all of them having 
β1TYPEr, β3TYPEr as fixed effects. The selected model parameters 
are shown on table 6 and figure 1. The models that include 
TCIs require information after the common moment of diame-
ter measurement. Measurements are made from 65 DAFB to 
79 DAFB, while some TCI contemplated in the proposed mod
els can only be obtained from 95 DAFB onwards. For this rea-
son, forecasting between 80 and 95 days after full bloom, the 
models with TCI cannot be used, while if the forecast is made 
after 95 DAFB, models including them can be used. However, 
we observed that model predictive capacity not including TCIs 
depends to a great extent on the prediction moment, while 
models including TCI showed high predictive performances in 
all situations considered.

Table 5. Specifications of models 2_12, 2_13, 2_14, 2_15, 2_16, 2_17, 2_18, 2_19, 2_20 and 2_21.

Table 4. Specifications of models 2_7, 2_8, 2_9, 2_10 and 2_11 and their ICIs.

Model Fixed effects Random effects AIC BIC logLik

2_7 β1TYPEr, β3TYPEr
Site: bTRANS,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), 
bTRANS,3,FRUITm(j)

167340 167428 -83659

2_8 β1TYPEr, β3TYPEr
Site: bLONG,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,31,FRUITm(j), 
bTRANS,3,FRUITm(j)

179950 180030 -89965

2_9 β1TYPEr, β3TYPEr
Site:  bTRANS,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), 
bTRANS,3,FRUITm(j)

171105 171193 -85541

2_10 β1TYPEr, β3TYPEr
Site:  bLONG,3,SITEj, bTRANS,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), 
bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

108509 108604 -54242

2_11 β1TYPEr, β3TYPEr
Site:  b2,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), 
bTRANS,3,FRUITm(j)

116460 116548 -58219

Model Fixed effects Random effects

2_12 β1TYPEr, β3TYPEr

COV_1 for β3
Site: bLONG,3,SITEj, bTRANS,3,SITEj Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j

2_13 β1TYPEr, β3TYPEr

COV_1 for β3
Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,31,FRUITm(j), bTRANS,3,FRUITm(j)

2_14 β1TYPEr, β3TYPEr

COV_2 for β3
Site: bLONG,3,SITEj bTRANS,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_15 β1TYPEr, β3TYPEr

COV_2 for β3
Site:  b2,SITEj,; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_16 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Site:  bLONG,3,SITEj ; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_17 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_18 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Site:  bLONG,3,SITEj, bTRANS,3,SITEj; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_19 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Site:  bLONG,3,SITEj, bTRANS,3,SITEj, , b2,SITEj; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_20 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Site: b2,SITEj; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

2_21 β1TYPEr, β3TYPEr

COV_2 for β3, COV_3 for β2
Site:  bLONG,3,SITEj, b2,SITEj; Fruit: b2,FRUITm(j), bLONG,1,FRUITm(j), bLONG,3,FRUITm(j), bTRANS,3,FRUITm(j)

The incorporation of environmental covariates is of the form: βi+COV_i*TCI.
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Table 6. Parameter estimation for fitted models.

Figure 1. Fruit growth model 2_15 for seasons in the modeling base for longitudinal data. Shows the fruit sizes (mm) as a function of 
days after full bloom.

Parameters                                                                      Model estimations

Model 2_12 Model 2_14 Model 2_15 Model 2_16 Model 2_17 Model 2_20 Model 2_21

β1INTERCEPT -5.501** -5.508** -5.858** -5.575** -5.553** -5.534** -5.558**

β1LONG 6.671** 6.678** 7.030** 6.748** 6.729** 0.565** 6.731**

β2INTERCEPT 8.752** 8.757** 8.875** 9.305** 9.372** 9.401** 9.418**

β3INTERCEPT 10.001** 9.982** 9.984** 9.982** 9.982** 9.989** 9.984**

β3LONG -0.242** -0.245** -0.248** -0.246** -0.246** -0.247** -0.246**

α2TEMP -0.00168 (3)** -0.01729(3)** -0.01845(3)NS -0.01934NS

α3TEMP -0.00044(1)** -0.00004(2)NS -0.00058(2)NS -0.00001(2)NS -0.00006(2)NS -0.00616(2)** -0.00018(2)NS

Ϭ2,SITIOj 0.033 0.002 8.263 . . 0.531 0.524

ϬbTRANS,3,SITEj 0.033 0.002 . 0.040 . . .

ϬbLONG,3,SITEj 0.021 0.495 . . 0.041 . 0.001

ϬbLONG,1,FRUITm(j) 0.051 0.035 0.042 0.038 2.954 0.039 0.038

Ϭb,2,FRUITm(j) 1.672 1.805 1.646 2.113 . 2.052 2.087

ϬbLONG,3,FRUITm(j) 0.001 0.045 0.297 0.001 0.002 0.001 0.001

ϬbTRANS,3,FRUITm(j) 0.079 0.007 0.021 0.004 0.003 0.004 0.033

ϬRES 0,545 0,554 0,529 0.549 0.533 0.535 0.525

ϬbX,1i, ϬbX,2,i  and ϬbX,3,i are random effects at SITE level. ϬbX,1ij, ϬbX,2,ij  and ϬbX,3, ij are random effects at FRUIT level.
(1) COV_1; (2)COV_2; (3)COV_3; (NS)Not significance; (**)Significance (p<0.01). Test based on Wald statistics with normal asymptotic 
distribution.
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The good performance of models contemplating TCI can be 
explained by temperature effects on cell expansion through
out December and, therefore, in final fruit size obtained, in ac-
cordance with Tassile et al. (2005) and Giménez, (2012).

Generally, variables expressing temporal or local spatial fluc-
tuations increase accuracy and reduce NLME prediction bias. 
The results obtained in this work agreed with those found 
in other study areas such as forester (Crecente Campo et 
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al., 2010; Calama and Montero, 2005; Newton and Amposah, 
2007); in pharmacodynamics (Mandema et al., 1992; Wake-
field, 1996; Wahlby, 2002; Ribbing and Jonsson, 2004; Bonate, 
2006; Bertrand et al., 2011; Hagenbunch, 2011), in epidemiolo-
gy (Distiller et al., 2010); in animal production (Furtado Campos 
et al., 2014). Also, previous results on the differential effect of 
thermal accumulation on fruit phenological moments were cor
roborated. This is how in early growth stages, high temperatu-
res stimulate cell growth and fruit potential size, while at the 
end of the cycle high temperatures negatively affect growth rates 
(Tassile et al., 2005; Tassile et al., 2006; Rodriguez, 2009).

CONCLUSION

Multilevel NLMM showed the advantage of discerning and 
quantifying stochastic variability sources at different levels, 
obtaining better ICI and CP in comparison to models conside-
ring a single level of variability in random effects.

The candidate models resulting from modelling both transver
sal and longitudinal data were multilevel models with random 
effects at site and fruit level. In addition, the capacity of some 
multilevel models without considering TCIs to achieve high 
ICI was very interesting. This occurred due to the ability of 
site-level random effects to account for stochastic variability 
without requiring measurement or identification of the varia-
tion source. 

The incorporation of TCIs characterizing different moments 
of fruit growth to the NLMM was favorable.
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