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ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) has emerged as a key bioactive molecule in plants, extending far beyond
its well-known role in animals. In horticultural crops, melatonin contributes to physiological regulation, stress mitiga-
tion, and improved agronomic performance. This review synthesizes current evidence on melatonin’s biosynthesis,
physiological roles, and its effects on tolerance to abiotic stressors such as drought, salinity, and temperature extre-
mes. The review further discusses its application in species including lettuce, tomato, cucumber, and broccoli, with
a focus on seed treatment, foliar application, and irrigation. Despite promising outcomes, challenges remain in stan-
dardizing doses, validating field efficacy and integrating melatonin into commercial horticulture. Future directions
highlight the need for omics-based studies, field-level validations and exploration of melatonin-based technologies
to support sustainable crop production.
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RESUMEN

La melatonina (N-acetil-5-metoxitriptamina) ha emergido como una molécula bioactiva clave en las plantas, exten-
diéndose mucho mas alla de su conocido papel en los animales. En los cultivos horticolas, la melatonina contribuye
a la regulacion fisioldgica, la mitigacion del estrés y la mejora del rendimiento agrondmico. Esta revision sintetiza la
evidencia actual sobre la biosintesis de la melatonina, sus roles fisiolégicos y sus efectos en la tolerancia a estresores
abidticos como la sequia, la salinidad y las temperaturas extremas. La revision aborda ademas su aplicacién en espe-
cies como la lechuga, el tomate, el pepino y el brécoli, centrandose en el tratamiento de semillas, la aplicacién foliar y
la irrigacidn. A pesar de que los resultados son prometedores, persisten desafios en la estandarizacion de las dosis,
la validacién de la eficacia en campo y la integracién de la melatonina en la horticultura comercial. Las direcciones
futuras resaltan la necesidad de estudios basados en émicas, validaciones a nivel de campo y la exploracién de tec-
nologias basadas en melatonina para apoyar la produccidn de cultivos sostenible.

Palabras clave: melatonina, mitigacion del estrés abidtico, defensa antioxidante, productividad de cultivos, regula-
cién hormonal.
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INTRODUCTION

Horticultural crops, which include vegetables, fruits and or-
namental species, are characterized by their high commercial
value, perishability and sensitivity to environmental conditions.
Unlike many staple crops, horticultural species often have sha-
llow root systems, rapid growth cycles and delicate physiolo-
gical balances, making them particularly vulnerable to abiotic
stresses such as drought, salinity, extreme temperatures, he-
avy metal toxicity, and ultraviolet (UV) radiation (Rouphael and
Colla, 2020). These stressors disrupt vital cellular processes,
leading to oxidative damage, impaired photosynthesis, altered
hormonal signaling and reduced nutrient uptake (Ahanger et
al., 2017; Hasanuzzaman et al., 2013). In crops like tomato (So-
lanum lycopersicum L.), lettuce (Lactuca sativa L.), cucumber
(Cucumis sativus L.) and pepper (Capsicum annuum L.), even
moderate levels of abiotic stress can cause drastic reductions
in yield, quality, shelf life, and visual appeal—factors that are
critical in competitive markets and for food chain sustainability
(Francis et al., 2012). Additionally, the intensification of climate
variability and the expansion of production into marginal soils
further increase the exposure of horticultural systems to abio-
tic challenges (Borgohain et al., 2019), highlighting the urgent
need for effective and sustainable stress mitigation strategies.

Melatonin (N-acetyl-5-methoxytryptamine) was first discove-
red in animals (Lerner et al., 1958), where it plays a central role
in regulating circadian rhythms, sleep-wake cycles, reproductive
timing and antioxidant defenses (Karasek and Winczyk, 2006). In
humans, melatonin is primarily synthesized in the pineal gland and
is widely used as a natural supplement for sleep disorders, jet lag
and neurodegenerative conditions due to its ability to scavenge
free radicals and modulate immune responses (Reiter et al., 2014).

More recently, the presence and synthesis of melatonin have
been confirmed in a wide range of plant species (Dubbels et al.,
1995; Hattori et al., 1995), where it is now recognized as a pleio-
tropic molecule involved in numerous physiological and deve-
lopmental processes. In plants, melatonin contributes to seed
germination (Wang et al., 2024), root architecture (Pelagio-Flo-
res et al., 2012), leaf senescence delay (Liang et al., 2015), pho-
tosynthetic efficiency (Wang et al., 2016) and fruit ripening (Liu et
al., 2016). Importantly, its powerful antioxidant activity (Oloumi,
2022), capacity to regulate gene expression (Fan et al., 2018), in-
teraction with plant hormones such as auxins and abscisic acid
(ABA) (Arnao and Hernéndez-Ruiz, 2018) and its involvement in
mitochondrial protection (Turk and Genisel, 2019) make it a pro-
mising candidate for improving abiotic stress tolerance. These
multifaceted roles have sparked growing interest in using mela-
tonin as a natural, sustainable biostimulant in horticultural crop
management (Bose and Howlader, 2020).

MELATONIN BIOSYNTHESIS

Melatonin (N-acetyl-5-methoxytryptamine) is endogenously
synthesized in plants through a conserved pathway that begins
with the amino acid tryptophan. This precursor is sequentially
converted into tryptamine by tryptophan decarboxylase (TDC),
then, into serotonin via tryptamine 5-hydroxylase (T5H). Finally,
serotonin is acetylated by serotonin N-acetyltransferase (SNAT)
and methylated by acetylserotonin O-methyltransferase (ASMT)
or caffeic acid O-methyltransferase (COMT), leading to melato-
nin production (fig. 1). This multi-step route is highly flexible and
may vary depending on tissue type, developmental stage, and
environmental conditions (Back et al., 2016).
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Figure 1. Melatonin biosynthesis pathway in plants (adapted from
Yan et al., 2023).

Unlike animals, where melatonin is primarily synthesized in the
pineal gland, plants produce melatonin in multiple subcellular
compartments, including the cytoplasm, chloroplasts, mitochon-
dria, and even the nucleus. This widespread biosynthesis allows
melatonin to act both locally and systemically, supporting its role
as a versatile regulator in plant physiology (Zhao et al., 2019).

Melatonin distribution varies widely across tissues and spe-
cies. It has been detected in roots, leaves, flowers, fruits, and
seeds, with concentrations fluctuating in response to develop-
mental signals and external stimuli, such as light, temperature,
and oxidative stress. Notably, higher melatonin levels are often
found in organs with elevated metabolic activity or exposure
to stress, which suggests a protective allocation mechanism
within the plant (Arnao and Hernandez Ruiz, 2015).

In this context, melatonin is not merely a byproduct of
tryptophan metabolism, but an actively regulated molecule with
specific functions. Its spatial distribution across plant organs
and cellular compartments points to a complex role that extends
far beyond antioxidant activity, positioning melatonin as an inte-
gral component of the plant’s adaptive response network.
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PHYSIOLOGICAL ROLES OF MELATONIN IN PLANTS

Melatonin has gained increasing attention as a multifunctio-
nal regulator in plants, including horticultural crops such as
fruits, vegetables, and ornamentals. Beyond its well-establis-
hed antioxidant properties, melatonin plays critical roles in
modulating growth, development, photosynthesis, reproductive
processes, and secondary metabolism under normal physiolo-
gical conditions (Arnao, 2016; Fan et al., 2018). Due to its broad
spectrum of actions, melatonin serves as a central signaling
molecule in plant biology.

Regulation of plant growth and development

Melatonin acts as a multifunctional growth regulator in hor-
ticultural crops, influencing key stages of plant development
from seed germination to the formation of reproductive or-
gans. Its ability to interact with the plant hormonal network
—particularly auxins, gibberellins, and cytokinins— allows it
to coordinate complex growth responses in a dose- and con-
text-dependent manner (Kotodziejczyk and Posmyk, 2016).
These interactions suggest that melatonin is not acting inde-
pendently, but rather as a component of a tightly regulated
signaling web that orchestrates morphogenesis and develo-
pmental plasticity.

In root development, melatonin has shown auxin-like activi-
ty, promoting lateral root formation, root elongation, and root
biomass accumulation. Studies in tomato, cucumber, and pea
(Pisum sativum L.) have demonstrated that exogenous mela-
tonin at low micromolar concentrations enhances root system
architecture, likely through the modulation of auxin transport
and signaling pathways (Tian et al., 2024; Wang et al., 2022;
Yusuf et al., 2020). These improvements in root morphology
enhance water and nutrient uptake efficiency, which are critical
for optimal growth and yield.

During vegetative growth, melatonin contributes to shoot
elongation and leaf expansion by modulating cell division
and cell wall loosening genes (Wang et al., 2022). In broccoli
(Brassica oleracea L.), melatonin treatment under controlled
conditions resulted in improved leaf size and fresh weight
accumulation (Sardar et al., 2023), highlighting its potential
as a growth-promoting agent. In root development, studies in
cucumber demonstrated that melatonin enhances lateral root
formation and increases root biomass (Li et al., 2025), which
is essential for nutrient absorption and anchorage. Moreover,
melatonin-treated plants typically exhibit improved biomass
accumulation and chloroplast development during early growth
stages, contributing to vigorous seedling establishment (Sharif
etal., 2018; Zhao et al., 2021).

Melatonin also delays leaf senescence by regulating ROS
homeostasis and modulating senescence-associated gene
expression (Oloumi, 2022). This delay in aging supports pro-
longed photosynthetic activity and resource allocation to de-
veloping tissues. Additionally, melatonin enhances the accu-
mulation of primary metabolites, including soluble sugars and
proteins, contributing to better nutritional quality and plant vi-
gor (Sharif et al., 2018).

Taken together, these findings underscore the role of melato-
nin as a fine-tuner of vegetative growth in horticultural crops,
acting through a combination of antioxidant protection, hormo-
nal crosstalk, and gene regulatory mechanisms. These effects
not only improve growth under optimal conditions but also pre-
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pare the plant for enhanced resilience to future stress, which is
further explored in subsequent sections.

Role in reproductive development and fruit quality

Regarding reproductive development, melatonin has been
linked to enhanced floral initiation and reduced floral abscission
(Arnao and Hernandez-Ruiz, 2020), although this area remains
underexplored in field-grown horticultural crops. Preliminary
evidence from ornamental species suggests that melatonin
may support flower retention by stabilizing hormonal balance
and improving antioxidant capacity in floral tissues (Hosseini et
al., 2025; SeyedHajizadeh et al., 2024; Wang et al., 2024).

In ‘Micro-Tom’, a model cultivar of tomato, melatonin accumu-
lation was observed throughout fruit development, suggesting
a regulatory role for melatonin in the physiological processes
associated with fruit maturation (Okazaki and Ezura, 2009).

In strawberry (Fragaria x ananassa Duch.), the exogenous
application of 10 pM melatonin delayed fruit ripening by lowe-
ring ABA and H,0, levels, enhancing antioxidant activity, and
altering key biochemical and morphological characteristics.
These findings suggest that melatonin modulates the ripening
process through hormonal regulation and ROS-related mecha-
nisms (Mansouri et al., 2023).

Furthermore, melatonin improves fruit quality attributes inclu-
ding sugar accumulation, firmness, pigment content and aro-
ma compound synthesis (Arnao and Hernandez-Ruiz, 2020).
In strawberries, for instance, preharvest melatonin application
increased soluble sugar content and enhanced anthocyanin
accumulation, leading to improved coloration and sweetness
(E-Mogy et al., 2019).

Seed physiology and germination

Melatonin plays a crucial role in seed physiology, functio-
ning both as a signaling molecule and a protective antioxidant
during seed maturation and germination. Of melatonin have
been detected in seeds of several edible horticultural species
(Manchester et al., 2000), indicating its potential role in sa-
feguarding seeds during dormancy. In mature seeds, which
are typically dry and metabolically inactive, melatonin likely
serves as an intrinsic antioxidant reservoir. Its accumulation
is thought to offer preemptive protection against oxidative
damage during storage and the initial phases of imbibition,
when enzymatic antioxidant systems are not yet fully active
(Korkmaz et al., 2014).

During germination, melatonin contributes to improved seed
performance by enhancing water uptake, activating hydrolytic
enzymes such as amylases and proteases, and mitigating oxi-
dative stress through the reduction of lipid peroxidation and re-
active oxygen species (ROS) accumulation (Wang et al., 2022).
These physiological improvements lead to higher germination
rates, more uniform seedling emergence, and enhanced early
vigor. In horticultural crops like lentils (Lens culinaris L.), bean
(Phaseolus vulgaris L.), and cucumber exogenous applica-
tion of melatonin at low micromolar concentrations has been
shown to accelerate germination under both optimal and su-
boptimal conditions (Aguilera et al., 2015; Posmyk et al., 2009).
However, these effects are dose-dependent, and excessive me-
latonin levels can inhibit germination or delay radicle emergen-

ce (Castafares and Bouzo, 2019).
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Beyond its antioxidant properties, melatonin is also involved
in the hormonal regulation of germination. It appears to favor a
pro-germinative hormonal balance by upregulating gibberellin
(GA) biosynthesis while downregulating ABA signaling (Chen
etal, 2021).

Overall, melatonin emerges as a promising biostimulant to
enhance seed germination and seedling establishment in horti-
cultural crops, particularly under stress-prone conditions, such
as salinity, drought or extreme temperatures, topics that will be
further explored in the following chapter.

Circadian and photoperiodic regulation by melatonin

Melatonin is widely recognized as a key regulator of circa-
dian rhythms in animals (Karasek and Winczyk, 2006), and
growing evidence suggests it also plays a role in the tem-
poral regulation of physiological processes in plants (Fan et
al., 2018). In horticultural crops, where developmental timing
and flowering synchronization are critical for yield and quali-
ty, melatonin may contribute to the coordination of circadian
and photoperiodic responses, although this field remains un-
derexplored.

In plants, circadian rhythms regulate processes such as
stomatal opening, photosynthetic activity, hormone synthe-
sis and flowering time (Kim et al., 2017). Melatonin levels in
plant tissues exhibit diurnal oscillations, with higher concen-
trations typically detected during the dark phase, suggesting
endogenous circadian control of its biosynthesis (Mannino
et al., 2021). This rhythmicity aligns with the expression
patterns of melatonin biosynthetic genes such as TDC,
SNAT and ASMT, which are influenced by light cues and
the internal clock (Kumari et al., 2023). Melatonin has also
been shown to influence circadian rhythms by modulating
the expression of core clock genes and enhancing rhythm
amplitude, as observed in Arabidopsis (Huang et al., 2012)
and grapevine (Vitis vinifera L.) (Boccalandro et al., 2011).
However, research on the circadian regulation of melatonin
in horticultural crops remains extremely limited, and further
studies are needed to elucidate its physiological relevance
in these species.

Photoperiodism, the response of organisms to changes in
day length, is a major determinant of flowering time in many
horticultural species (Adams and Langton, 2005). While di-
rect studies in horticultural crops are limited, similar mecha-
nisms have been observed in other species. For instance, in
apple trees (Malus domestica L.), melatonin levels fluctuate
in response to seasonal light signals, and exogenous melato-
nin application has been found to delay flowering (Zhang et
al., 2019). This suggests that melatonin may serve as a signal
integrating environmental light cues with reproductive develo-
pment across different plant species.

Additionally, melatonin’s photoprotective properties, inclu-
ding its ability to modulate chloroplast redox status and enhan-
ce light use efficiency, may help synchronize photosynthetic
rhythms with environmental light regimes (Kumari et al., 2023).
This contributes not only to improved stress resilience but also
to optimized growth and resource use efficiency.

Overall, while the role of melatonin in circadian and photo-
periodic regulation in horticultural crops is still an emerging
field, preliminary findings indicate its potential involvement
in aligning internal physiological rhythms with environmen-
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tal cycles (Kumari et al., 2023). Further research in this area
could reveal novel strategies to manipulate flowering time,
optimize growth cycles, and improve productivity in diverse
horticultural species.

MELATONIN AND ABIOTIC STRESS TOLERANCE
IN HORTICULTURAL CROPS: MECHANISMS AND
AGRONOMIC APPLICATIONS

Abiotic stresses such as drought, salinity, and temperature
extremes represent major constraints to horticultural crop pro-
ductivity and quality (Rouphael and Colla, 2020). These adver-
se conditions are becoming more frequent and severe due to
climate change and environmental pressures, challenging con-
ventional production systems and threatening food security
(Abou-Hussein, 2012).

In recent years, growing interest has been directed toward
eco-friendly and efficient strategies to enhance plant stress
resilience. Among these, melatonin has emerged as a mul-
tifunctional molecule with strong potential to mitigate the
effects of environmental stressors (Janas and Posmyk, 2013).
While its physiological roles in plants have been broadly cha-
racterized, its specific applications in stress-prone horticultural
systems require further synthesis.

This chapter explores the protective roles of melatonin in res-
ponse to the main abiotic stresses in horticultural crops. For
each type of stress, we examine its agronomic relevance, des-
cribe the known mechanisms of melatonin-induced tolerance,
and highlight key examples from experimental and applied stu-
dies. We conclude with an overview of current and potential
agronomic applications of melatonin within integrated crop
management.

Drought stress

Drought is one of the most critical abiotic stress factors
affecting agricultural production worldwide (Borgohain et al.,
2019). Water scarcity severely disrupts plant physiological
processes, including photosynthesis, nutrient transport, and
cellular homeostasis, ultimately resulting in reduced growth,
lower yields, and poor product quality (Seleiman et al., 2021). In
horticultural crops, which often possess shallow root systems
and high-water demands, drought stress can cause rapid and
irreversible damage, particularly during reproductive stages
(Rao et al., 2016).

Melatonin has been shown to play a significant role in
enhancing drought tolerance through multiple and coordi-
nated mechanisms. One of its most prominent actions is
the modulation of the antioxidant defense system (Oloumi,
2022). Under drought conditions, ROS levels increase
sharply, causing oxidative damage to lipids, proteins, and
nucleic acids (Choudhury et al., 2017). Melatonin directly
scavenges ROS and also upregulates antioxidant enzymes
such as superoxide dismutase (SOD), catalase (CAT), and
peroxidases, thereby maintaining cellular redox balance
(zhang and Zhang, 2014).

Beyond its antioxidant role, melatonin contributes to drought
tolerance by regulating stomatal behavior and water use
efficiency, in part through its interaction with abscisic acid
(ABA), a key drought-responsive phytohormone. Melatonin
modulates ABA biosynthesis and signaling pathways, thereby
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fine-tuning stomatal responses under water-deficient condi-
tions (Muhammad et al., 2024). Additionally, it influences the
expression of aquaporins and stress-related transcription fac-
tors, enhancing root water uptake and reducing transpiration
(Sharma and Zheng, 2019).

Numerous studies have confirmed the beneficial effects of
melatonin application in drought-stressed horticultural crops.
In tomato, exogenous melatonin improved relative water con-
tent, chlorophyll concentration, and antioxidant enzyme acti-
vity, leading to better growth and yield under limited irrigation
(Huang et al., 2023). In cucumber, melatonin pretreatment en-
hanced root development and delayed leaf wilting (Zhang et al.,
2013). Similarly, in pepper (Capsicum annuum L.) and straw-
berry, melatonin treatments mitigated oxidative stress and
preserved photosynthetic- efficiency during drought episodes
(Kaya and Shabala, 2023; Khan et al., 2023).

These findings demonstrate that melatonin acts as a versatile
regulator of drought tolerance in horticultural species, offering
promising avenues for sustainable crop production under wa-
ter-limiting conditions.

Salt stress

Salinity is a major abiotic constraint that limits the productivity
and quality of crops across diverse agroecological zones (Safdar
et al., 2019). While it is particularly prevalent in arid and semi-
arid areas due to limited rainfall and saline irrigation, salinization
also arises in other environments as a result of poor drainage,
excessive fertilizer use, and soil degradation (Yadav et al., 2011).

High concentrations of sodium (Na*) and chloride (ClI-) ions
disrupt cellular homeostasis by interfering with ion balance
and water relations in plant tissues. This ionic imbalance leads
to osmotic stress, nutrient deficiencies, membrane destabili-
zation, and excessive generation of ROS, ultimately impairing
photosynthesis, growth and productivity (Pandit et al., 2024;
Safdar et al., 2019). As a result, salinity poses a significant cha-
llenge for sustainable crop production in affected regions.

Exogenous application of melatonin has been shown to sig-
nificantly enhance salt stress tolerance in a wide range of horti-
cultural crops. Its protective effects are attributed to its ability to
modulate ion homeostasis, improve osmotic adjustment, reduce
oxidative stress, and interact with hormonal pathways (Zhan et
al.,, 2019). In tomato plants, melatonin treatment improved K*/
Na* ratios by regulating ion transporters such as SISOS1, SI-
NHX1, and SIHKT1, thereby maintaining ionic balance under salt
stress (Liu et al., 2015). Additionally, melatonin enhanced the
activity of antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD), reducing ROS ac-
cumulation and lipid peroxidation in salt-stressed tissues.

In lettuce, melatonin alleviated salt-induced growth inhibition by
enhancing the activity of antioxidant enzymes and limiting the ac-
cumulation of Na* and CI- ions, probably through the modulation
of stress-responsive gene expression (El-Bauome et al., 2024).
Similarly, in melon (Cucumis melo L.), foliar application of melato-
nin combined with Ca?* improved photosynthetic efficiency, water
use efficiency, and ion homeostasis under saline conditions by
decreasing Na* levels and increasing Ca?* accumulation in both
leaves and roots (Wu et al., 2019). In this species, seed priming
with melatonin has also been shown to enhance germination ra-
tes under salt stress, indicating its effectiveness at early develop-
mental stages (Castafiares and Bouzo, 2019).
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Melatonin’s role in hormonal crosstalk under salinity has
also been documented. It has been shown to interact with
abscisic acid (ABA), gibberellins (GAs), and ethylene signa-
ling pathways, contributing to fine-tuned stress responses.
For instance, melatonin application downregulates ABA
biosynthesis genes under moderate salt stress, preventing
excessive stomatal closure and allowing continued gas ex-
change and growth.

Taken together, these findings support the use of melatonin
as a promising biostimulant for mitigating salt stress in hor-
ticultural systems. Its multifaceted mode of action, involving
ion transport regulation, antioxidant defense enhancement,
osmotic adjustment, and hormonal interactions, provides a
strong basis for its integration into sustainable crop manage-
ment strategies.

Temperature stress

Temperature extremes, both high and low, pose significant
threats to the productivity and quality of horticultural crops.
Heat stress can disrupt photosynthesis, accelerate respiration,
denature proteins and compromise reproductive development
(Jagadish et al., 2021), while cold stress affects membrane
fluidity, enzyme activity, and nutrient transport (Soualiou et al.,
2022). As global climate change increases the frequency and
intensity of thermal fluctuations, enhancing crop resilience to
temperature stress has become a critical priority in horticultu-
ral systems (Devireddy et al., 2021).

Melatonin has been shown to enhance thermotolerance in
plants by protecting the photosynthetic apparatus, reducing
oxidative damage, and regulating the expression of heat-res-
ponsive genes (Hassan et al., 2022). In tomato, exogenous me-
latonin increased chlorophyll content and antioxidant enzyme
activity, while upregulating genes encoding heat shock prote-
ins (HSPs) (Xu et al., 2016). Similarly, in strawberry and celery
(Apium graveolens L.), melatonin treatment enhanced thermo-
tolerance by improving photosynthetic efficiency, reducing oxi-
dative stress, and promoting the expression of heat-responsive
genes, resulting in better seedling survival under high tempera-
ture conditions (Li et al., 2022; Manafi et al., 2022).

Cold stress tolerance is also enhanced by melatonin through
mechanisms that include ROS scavenging, maintenance
of membrane integrity, and regulation of cold-responsive
pathways (Qari et al., 2022). In pepper, melatonin application
under cold stress improved photosynthetic pigments, enzy-
me activities, and photosystem efficiency, resulting in better
cold tolerance (Altaf et al., 2022). Similarly, in cucumber, foliar
application of melatonin under low temperature and high hu-
midity conditions enhanced photosynthetic efficiency, stimu-
lated the antioxidant defense system and improved nutrient
uptake, contributing to increased tolerance to cold stress
(Amin et al., 2022).

Overall, the application of melatonin represents a promising
approach to mitigate the detrimental effects of both heat and
cold stress in horticultural crops, supporting plant survival and
productivity under increasingly variable climatic conditions.

Figure 2 illustrates how melatonin enhances abiotic stress
tolerance in horticultural crops, complementing the findings in

table 1 and the earlier case studies.
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Figure 2. Melatonin-mediated abiotic stress tolerance in horticultu-
ral crops. The figure summarizes how melatonin mitigates drought,
salinity, and temperature stress through antioxidant activation, hor-
monal modulation, and stress-responsive gene regulation, alongsi-
de common agronomic application methods.

FUTURE DIRECTIONS AND CHALLENGES IN THE USE
OF MELATONIN FOR SUSTAINABLE HORTICULTURE

Knowledge gaps and research needs

Despite substantial progress in understanding the roles of me-
latonin in horticultural crops, several critical knowledge gaps re-
main. The precise biosynthetic pathways and regulation of endo-
genous melatonin under different environmental conditions are
not fully elucidated, limiting the ability to manipulate its levels
effectively. In addition, the full spectrum of melatonin receptors
and the downstream signaling pathways involved in transducing
its effects have yet to be comprehensively identified and cha-
racterized (Kumari et al., 2023). This lack of molecular insight
constrains our understanding of how melatonin elicits specific
physiological responses under stress conditions.

Moreover, the complex interactions between melatonin and
plant-associated microbiomes, as well as its combined effects
with other biostimulants and phytohormones, remain poorly
understood (Arnao and Herndndez-Ruiz, 2019). Addressing
these research needs will be crucial to fully exploit melatonin’s
potential in sustainable horticulture.

RIA

Technological and agronomic challenges in melatonin
application

Although melatonin has shown great promise as a biostimu-
lant in horticulture, several practical challenges hinder its wi-
despread application. A key limitation is the lack of standar-
dized protocols for dosage, application methods (e.g., foliar
spray, seed priming), and timing, which often leads to incon-
sistent outcomes across different species and environmental
conditions (Arnao and Hernédndez-Ruiz, 2019). Moreover, mela-
tonin is not yet officially recognized as a biostimulant or plant
growth regulator in most regulatory frameworks, restricting its
commercialization and broader adoption (Arnao and Hernan-
dez-Ruiz, 2019).

Additional barriers include its chemical instability under
field conditions —particularly its sensitivity to light and tem-
perature— which can reduce its effectiveness. To overcome
this, advanced delivery systems such as nano-formulations
and encapsulation are being developed to improve its stabi-
lity and ensure controlled release (Mukherjee et al., 2024). At
the same time, the limited availability and high cost of com-
mercial melatonin products tailored for agriculture represent
a further obstacle to large-scale implementation (Arnao and
Hernandez-Ruiz, 2019).

In summary, advancing melatonin use in horticulture will re-
quire optimizing application strategies, improving formulation
technologies, and establishing clear regulatory frameworks to
ensure efficacy, affordability, and environmental safety.

CONCLUSION

Melatonin has emerged as a multifaceted regulator in horti-
cultural crops, playing critical roles in growth, development, and
especially in enhancing tolerance to various abiotic stresses.
Its antioxidant properties, interaction with phytohormones, and
modulation of physiological and molecular responses posi-
tion melatonin as a promising tool for sustainable horticultu-
re. However, despite significant advances, key gaps remain in
our understanding of its biosynthesis, signaling pathways and
interactions with plant microbiomes, which limit the full exploi-
tation of its potential.

The practical application of melatonin in the field is challen-
ged by the lack of standardized protocols, formulation stability
issues and regulatory hurdles. Addressing these challenges
through multidisciplinary research and development of tailored
delivery systems will be essential for its effective integration
into crop management practices.

Looking forward, future studies should focus on elucidating
the molecular mechanisms underlying melatonin’s actions, op-
timizing application strategies for diverse horticultural species,
and evaluating long-term environmental impacts. Such efforts
will contribute to unlocking the full benefits of melatonin, en-
hancing crop resilience and productivity in the face of increa-
sing environmental stresses.

In conclusion, melatonin represents a valuable biostimulant
with great promise for advancing sustainable horticulture, pro-
vided that current knowledge gaps and practical challenges.
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Crop species Abloi;:psetress Aﬁ:;::;:?n Observed benefits References
Foliar spray, Tphotosynthesis, |ABA, | growth, | .
Drought irrigation fruit yield and quality components Jahan et al., 2024; Yang et al., 2022
Tomato (Solanum Salinity Foliar spray 1 antioxidant capacity, | growth Alietal., 2021; Hu et al., 2021
lycopersicum L.)
Heat Foliar spray Iphotosynthesis, | antioxidant An et al., 2025; Jahan et al., 2021
capacity, | growth v ’ N
Cold Foliar spray 1 antioxidant capacity, | growth Ding et al., 2017
Tphotosynthesis, | antioxidant Kaya and Doganlar, 2019; Khosravi et
Drought Seed treatment capacity, | growth al. 2023
Salinit Foliar spray, Tphotosynthesis, | antioxidant Karaca and Yakupoglu, 2025; Usman
Pepper (Capsicum y seed treatment capacity, | growth, 1 germination etal., 2023
annuum L.)
) Tphotosynthesis, | antioxidant
Heat Foliar spray capacity, | growth Zargar et al., 2025
Cold Irrigation 1 antioxidant capacity, 1 yield Korkmaz et al., 2021
- o Tphotosynthesis, | antioxidant .
€ qgplant (Solanum Salinity Irrigation capacity, | proline, | growth Wang et al., 2025; Zhang et al., 2025
melongena L.) Tphotosynthesis, | antioxidant
Cold Irrigation capacity, T'growth Yakuboglu et al., 2022
) 1 antioxidant capacity, | germination, Lee and Back, 2019; Zhang et al.,
Drought Foliar spray | growth 2013
- ) Tphotosynthesis, | antioxidant . .
Salinity Foliar spray capacity, | growth Liu et al., 2022; Zhang et al., 2020
Cucumber (Cucumis
sativus L.) . Tphotosynthesis, | antioxidant : .
Heat Foliar spray capacity, | growth Jiang et al., 2024; Xu et al., 2022
Cold tregsrfwint I-antioxidant capacity, |ABA, | Ma et al., 2023; Zhang et al., 2023
Foliar spra'y germination, ] growth N ! 9 v
Seed ioxid i h Castaf 1., 2024; Liu et al
Salinity treatment, T antioxidant capa?ty, 1 growth, | astafares et al., ; Liuetal,
Melon (Cucumis melo irrigation germination
L)
) Tphotosynthesis, | antioxidant
Cold Foliar spray capacity Zhang et al., 2017
) Tphotosynthesis, | antioxidant Khan et al., 2023; Safa Eynaladin et
Drought Foliar spray capacity, ] growth al., 2024
- ) 1 antioxidant capacity, | growth, | .
Strawberry (Fragaria x Salinity Foliar spray fruit yield and quality components Zahedi et al., 2020
ananassa Duch.) Tphotosynthesis, | antioxidant
Heat Foliar spray capacity, T'growth Manafi et al., 2021
Cold Foliar spray | antioxidant capacity, | growth, | Hayat et al., 2022

fruit yield and quality components

Table 1. Effects of exogenous melatonin application on abiotic stress tolerance in some horticultural crop.
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